E¡ect of oxygen level on simultaneous nitrogenase and sMMO expression and activity in Methylosinus trichosporium OB3b and its sMMOC mutant, PP319: aerotolerant N2 ¢xation in PP319

نویسندگان

  • Hyung J. Kim
  • David W. Graham
چکیده

Soluble methane monooxygenase (sMMO) expression and activity were monitored under conditions that either promoted or suppressed the expression of nitrogenase in Methylosinus trichosporium OB3b wild-type (WT) and in its sMMO-constitutive mutant, PP319. Both WT and mutant cultures had reduced sMMO activity and protein levels under elevated O2 conditions (188 WM) compared with low O2 conditions (24 WM). Simultaneous N2 fixation also reduced sMMO activity in both cultures when O2 was low. However, when O2 levels were increased, nitrogenase expression ceased and sMMO activity was reduced by V77% in the WT, whereas sMMO and nitrogenase expression and activity in PP319 were relatively unaffected by the higher O2 levels. Western immunoblot analysis showed that the nitrogenase Fe protein resolved as two components (apparent molecular mass of 30.5 and 32 kDa) in both the WT and PP319 when O2 levels were low. When O2 levels were high, only the 32-kDa form of the Fe protein was present in PP319, whereas neither form was detectable in the WT. Aerotolerant N2 fixation appears to be associated with the 32-kDa Fe protein in M. trichosporium OB3b. ß 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1.

A methanotroph (strain 68-1), originally isolated from a trichloroethylene (TCE)-contaminated aquifer, was identified as the type I methanotroph Methylomonas methanica on the basis of intracytoplasmic membrane ultrastructure, phospholipid fatty acid profile, and 16S rRNA signature probe hybridization. Strain 68-1 was found to oxidize naphthalene and TCE via a soluble methane monooxygenase (sMMO...

متن کامل

Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants.

Methylosinus trichosporium OB3b produces an extracellular copper-binding ligand (CBL) with high affinity for copper. Wild-type cells and mutants that express soluble methane monooxygenase (sMMO) in the presence and absence of copper (sMMOc) were used to obtain cell exudates that were separated and analyzed by size exclusion high-performance liquid chromatography. A single chromatographic peak, ...

متن کامل

Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus tr...

متن کامل

Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b.

Soluble methane monooxygenase (sMMO) activity in Methylosinus trichosporium OB3b was found to be more strongly affected as copper-to-biomass ratios changed in a newly developed medium, M2M, which uses pyrophosphate for metal chelation, than in nitrate mineral salts (NMS), which uses EDTA. When M2M medium was amended with EDTA, sMMO activity was similar to that in NMS medium, indicating that EDT...

متن کامل

Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b.

Soluble methane monooxygenase (sMMO) from Methylosinus trichosporium OB3b can degrade many halogenated aliphatic compounds that are found in contaminated soil and groundwater. This enzyme oxidizes the most frequently detected pollutant, trichloroethylene (TCE), at least 50 times faster than other enzymes. However, slow growth of the strain, strong competition between TCE and methane for sMMO, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001